Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Repression Network for Precise Vehicle Search (1708.02386v1)

Published 8 Aug 2017 in cs.CV

Abstract: The growing explosion in the use of surveillance cameras in public security highlights the importance of vehicle search from large-scale image databases. Precise vehicle search, aiming at finding out all instances for a given query vehicle image, is a challenging task as different vehicles will look very similar to each other if they share same visual attributes. To address this problem, we propose the Repression Network (RepNet), a novel multi-task learning framework, to learn discriminative features for each vehicle image from both coarse-grained and detailed level simultaneously. Besides, benefited from the satisfactory accuracy of attribute classification, a bucket search method is proposed to reduce the retrieval time while still maintaining competitive performance. We conduct extensive experiments on the revised VehcileID dataset. Experimental results show that our RepNet achieves the state-of-the-art performance and the bucket search method can reduce the retrieval time by about 24 times.

Citations (12)

Summary

We haven't generated a summary for this paper yet.