Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the technical challenges for deploying Machine Learning solutions in a software company (1708.02363v1)

Published 8 Aug 2017 in cs.HC, cs.AI, cs.SE, and stat.ML

Abstract: Recently software development companies started to embrace Machine Learning (ML) techniques for introducing a series of advanced functionality in their products such as personalisation of the user experience, improved search, content recommendation and automation. The technical challenges for tackling these problems are heavily researched in literature. A less studied area is a pragmatic approach to the role of humans in a complex modern industrial environment where ML based systems are developed. Key stakeholders affect the system from inception and up to operation and maintenance. Product managers want to embed "smart" experiences for their users and drive the decisions on what should be built next; software engineers are challenged to build or utilise ML software tools that require skills that are well outside of their comfort zone; legal and risk departments may influence design choices and data access; operations teams are requested to maintain ML systems which are non-stationary in their nature and change behaviour over time; and finally ML practitioners should communicate with all these stakeholders to successfully build a reliable system. This paper discusses some of the challenges we faced in Atlassian as we started investing more in the ML space.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ilias Flaounas (4 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.