Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Learnability of Programming Language Semantics (1708.02319v2)

Published 7 Aug 2017 in cs.PL

Abstract: Game semantics is a powerful method of semantic analysis for programming languages. It gives mathematically accurate models ("fully abstract") for a wide variety of programming languages. Game semantic models are combinatorial characterisations of all possible interactions between a term and its syntactic context. Because such interactions can be concretely represented as sets of sequences, it is possible to ask whether they can be learned from examples. Concretely, we are using long short-term memory neural nets (LSTM), a technique which proved effective in learning natural languages for automatic translation and text synthesis, to learn game-semantic models of sequential and concurrent versions of Idealised Algol (IA), which are algorithmically complex yet can be concisely described. We will measure how accurate the learned models are as a function of the degree of the term and the number of free variables involved. Finally, we will show how to use the learned model to perform latent semantic analysis between concurrent and sequential Idealised Algol.

Summary

We haven't generated a summary for this paper yet.