Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $w$-mixtures: Finite convex combinations of prescribed component distributions (1708.00568v3)

Published 2 Aug 2017 in cs.LG

Abstract: We consider the space of $w$-mixtures which is defined as the set of finite statistical mixtures sharing the same prescribed component distributions closed under convex combinations. The information geometry induced by the Bregman generator set to the Shannon negentropy on this space yields a dually flat space called the mixture family manifold. We show how the Kullback-Leibler (KL) divergence can be recovered from the corresponding Bregman divergence for the negentropy generator: That is, the KL divergence between two $w$-mixtures amounts to a Bregman Divergence (BD) induced by the Shannon negentropy generator. Thus the KL divergence between two Gaussian Mixture Models (GMMs) sharing the same Gaussian components is equivalent to a Bregman divergence. This KL-BD equivalence on a mixture family manifold implies that we can perform optimal KL-averaging aggregation of $w$-mixtures without information loss. More generally, we prove that the statistical skew Jensen-Shannon divergence between $w$-mixtures is equivalent to a skew Jensen divergence between their corresponding parameters. Finally, we state several properties, divergence identities, and inequalities relating to $w$-mixtures.

Citations (11)

Summary

We haven't generated a summary for this paper yet.