Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Injective homomorphisms of mapping class groups of non-orientable surfaces (1708.00218v1)

Published 1 Aug 2017 in math.GT and math.GR

Abstract: Let $N$ be a compact, connected, non-orientable surface of genus $\rho$ with $n$ boundary components, with $\rho \ge 5$ and $n \ge 0$, and let $\mathcal{M} (N)$ be the mapping class group of $N$. We show that, if $\mathcal{G}$ is a finite index subgroup of $\mathcal{M} (N)$ and $\varphi: \mathcal{G} \to \mathcal{M} (N)$ is an injective homomorphism, then there exists $f_0 \in \mathcal{M} (N)$ such that $\varphi (g) = f_0 g f_0{-1}$ for all $g \in \mathcal{G}$. We deduce that the abstract commensurator of $\mathcal{M} (N)$ coincides with $\mathcal{M} (N)$.

Summary

We haven't generated a summary for this paper yet.