Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Correct Composition of Dephased Behavioural Models (1707.09646v1)

Published 30 Jul 2017 in cs.LO

Abstract: Scenarios of execution are commonly used to specify partial behaviour and interactions between different objects and components in a system. To avoid overall inconsistency in specifications, various automated methods have emerged in the literature to compose (behavioural) models. In recent work, we have shown how the theorem prover Isabelle can be combined with the constraint solver Z3 to efficiently detect inconsistencies in two or more behavioural models and, in their absence, generate the composition. Here, we extend our approach further and show how to generate the correct composition (as a set of valid traces) of dephased models. This work has been inspired by a problem from a medical domain where different care pathways (for chronic conditions) may be applied to the same patient with different starting points.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube