Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Modeling Label Ambiguity for Neural List-Wise Learning to Rank (1707.07493v1)

Published 24 Jul 2017 in cs.IR, cs.NE, and stat.ML

Abstract: List-wise learning to rank methods are considered to be the state-of-the-art. One of the major problems with these methods is that the ambiguous nature of relevance labels in learning to rank data is ignored. Ambiguity of relevance labels refers to the phenomenon that multiple documents may be assigned the same relevance label for a given query, so that no preference order should be learned for those documents. In this paper we propose a novel sampling technique for computing a list-wise loss that can take into account this ambiguity. We show the effectiveness of the proposed method by training a 3-layer deep neural network. We compare our new loss function to two strong baselines: ListNet and ListMLE. We show that our method generalizes better and significantly outperforms other methods on the validation and test sets.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.