Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Improving Gibbs Sampler Scan Quality with DoGS (1707.05807v1)

Published 18 Jul 2017 in stat.ML, cs.LG, math.PR, and stat.ME

Abstract: The pairwise influence matrix of Dobrushin has long been used as an analytical tool to bound the rate of convergence of Gibbs sampling. In this work, we use Dobrushin influence as the basis of a practical tool to certify and efficiently improve the quality of a discrete Gibbs sampler. Our Dobrushin-optimized Gibbs samplers (DoGS) offer customized variable selection orders for a given sampling budget and variable subset of interest, explicit bounds on total variation distance to stationarity, and certifiable improvements over the standard systematic and uniform random scan Gibbs samplers. In our experiments with joint image segmentation and object recognition, Markov chain Monte Carlo maximum likelihood estimation, and Ising model inference, DoGS consistently deliver higher-quality inferences with significantly smaller sampling budgets than standard Gibbs samplers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.