Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Projections, multipliers and decomposable maps on noncommutative $\mathrm{L}^p$-spaces (1707.05591v21)

Published 18 Jul 2017 in math.OA, math.FA, and math.GR

Abstract: We introduce a noncommutative analogue of the absolute value of a regular operator acting on a noncommutative $\mathrm{L}p$-space. We equally prove that two classical operator norms, the regular norm and the decomposable norm are identical. We also describe precisely the regular norm of several classes of regular multipliers. This includes Schur multipliers and Fourier multipliers on some unimodular locally compact groups which can be approximated by discrete groups in various senses. A main ingredient is to show the existence of a bounded projection from the space of completely bounded $\mathrm{L}p$ operators onto the subspace of Schur or Fourier multipliers, preserving complete positivity. On the other hand, we show the existence of bounded Fourier multipliers which cannot be approximated by regular operators, on large classes of locally compact groups, including all infinite abelian locally compact groups. We finish by introducing a general procedure for proving positive results on selfadjoint contractively decomposable Fourier multipliers, beyond the amenable case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube