Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Monocular SLAM for Egocentric Videos (1707.05564v2)

Published 18 Jul 2017 in cs.CV

Abstract: Regardless of the tremendous progress, a truly general purpose pipeline for Simultaneous Localization and Mapping (SLAM) remains a challenge. We investigate the reported failure of state of the art (SOTA) SLAM techniques on egocentric videos. We find that the dominant 3D rotations, low parallax between successive frames, and primarily forward motion in egocentric videos are the most common causes of failures. The incremental nature of SOTA SLAM, in the presence of unreliable pose and 3D estimates in egocentric videos, with no opportunities for global loop closures, generates drifts and leads to the eventual failures of such techniques. Taking inspiration from batch mode Structure from Motion (SFM) techniques, we propose to solve SLAM as an SFM problem over the sliding temporal windows. This makes the problem well constrained. Further, we propose to initialize the camera poses using 2D rotation averaging, followed by translation averaging before structure estimation using bundle adjustment. This helps in stabilizing the camera poses when 3D estimates are not reliable. We show that the proposed SLAM technique, incorporating the two key ideas works successfully for long, shaky egocentric videos where other SOTA techniques have been reported to fail. Qualitative and quantitative comparisons on publicly available egocentric video datasets validate our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Suvam Patra (5 papers)
  2. Kartikeya Gupta (1 paper)
  3. Faran Ahmad (2 papers)
  4. Chetan Arora (79 papers)
  5. Subhashis Banerjee (19 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.