Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-label Music Genre Classification from Audio, Text, and Images Using Deep Features (1707.04916v1)

Published 16 Jul 2017 in cs.IR

Abstract: Music genres allow to categorize musical items that share common characteristics. Although these categories are not mutually exclusive, most related research is traditionally focused on classifying tracks into a single class. Furthermore, these categories (e.g., Pop, Rock) tend to be too broad for certain applications. In this work we aim to expand this task by categorizing musical items into multiple and fine-grained labels, using three different data modalities: audio, text, and images. To this end we present MuMu, a new dataset of more than 31k albums classified into 250 genre classes. For every album we have collected the cover image, text reviews, and audio tracks. Additionally, we propose an approach for multi-label genre classification based on the combination of feature embeddings learned with state-of-the-art deep learning methodologies. Experiments show major differences between modalities, which not only introduce new baselines for multi-label genre classification, but also suggest that combining them yields improved results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sergio Oramas (8 papers)
  2. Oriol Nieto (22 papers)
  3. Francesco Barbieri (29 papers)
  4. Xavier Serra (82 papers)
Citations (123)

Summary

We haven't generated a summary for this paper yet.