Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty principles and optimally sparse wavelet transforms (1707.04863v3)

Published 16 Jul 2017 in cs.IT and math.IT

Abstract: In this paper we introduce a new localization framework for wavelet transforms, such as the 1D wavelet transform and the Shearlet transform. Our goal is to design nonadaptive window functions that promote sparsity in some sense. For that, we introduce a framework for analyzing localization aspects of window functions. Our localization theory diverges from the conventional theory in two ways. First, we distinguish between the group generators, and the operators that measure localization (called observables). Second, we define the uncertainty of a signal transform based on a window as a whole, instead of defining the uncertainty of an individual window. We show that the uncertainty of a window function, in the signal space, is closely related to the localization of the reproducing kernel of the wavelet transform, in phase space. As a result, we show that using uncertainty minimizing window functions, results in representations which are optimally sparse in some sense.

Citations (8)

Summary

We haven't generated a summary for this paper yet.