Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UrbanFACET: Visually Profiling Cities from Mobile Device Recorded Movement Data of Millions of City Residents (1707.04210v1)

Published 13 Jul 2017 in cs.SI

Abstract: Cities are living systems where urban infrastructures and their functions are defined and evolved due to population behaviors. Profiling the cities and functional regions has been an important topic in urban design and planning. This paper studies a unique big data set which includes daily movement data of tens of millions of city residents, and develop a visual analytics system, namely UrbanFACET, to discover and visualize the dynamical profiles of multiple cities and their residents. This big user movement data set, acquired from mobile users' agnostic check-ins at thousands of phone APPs, is well utilized in an integrative study and visualization together with urban structure (e.g., road network) and POI (Point of Interest) distributions. In particular, we novelly develop a set of information-theory based metrics to characterize the mobility patterns of city areas and groups of residents. These multifaceted metrics including Fluidity, vibrAncy, Commutation, divErsity, and densiTy (FACET) which categorize and manifest hidden urban functions and behaviors. UrbanFACET system further allows users to visually analyze and compare the metrics over different areas and cities in metropolitan scales. The system is evaluated through both case studies on several big and heavily populated cities, and user studies involving real-world users.

Citations (6)

Summary

We haven't generated a summary for this paper yet.