Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Scale Variable Fidelity Surrogate Modeling (1707.03916v1)

Published 12 Jul 2017 in stat.ML, stat.AP, and stat.ME

Abstract: Engineers widely use Gaussian process regression framework to construct surrogate models aimed to replace computationally expensive physical models while exploring design space. Thanks to Gaussian process properties we can use both samples generated by a high fidelity function (an expensive and accurate representation of a physical phenomenon) and a low fidelity function (a cheap and coarse approximation of the same physical phenomenon) while constructing a surrogate model. However, if samples sizes are more than few thousands of points, computational costs of the Gaussian process regression become prohibitive both in case of learning and in case of prediction calculation. We propose two approaches to circumvent this computational burden: one approach is based on the Nystr\"om approximation of sample covariance matrices and another is based on an intelligent usage of a blackbox that can evaluate a~low fidelity function on the fly at any point of a design space. We examine performance of the proposed approaches using a number of artificial and real problems, including engineering optimization of a rotating disk shape.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Evgeny Burnaev (189 papers)
  2. Alexey Zaytsev (61 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.