Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Policy Preferences and Dynamics in the UN General Debate with Neural Word Embeddings

Published 11 Jul 2017 in cs.CL, cs.AI, and stat.ML | (1707.03490v1)

Abstract: Foreign policy analysis has been struggling to find ways to measure policy preferences and paradigm shifts in international political systems. This paper presents a novel, potential solution to this challenge, through the application of a neural word embedding (Word2vec) model on a dataset featuring speeches by heads of state or government in the United Nations General Debate. The paper provides three key contributions based on the output of the Word2vec model. First, it presents a set of policy attention indices, synthesizing the semantic proximity of political speeches to specific policy themes. Second, it introduces country-specific semantic centrality indices, based on topological analyses of countries' semantic positions with respect to each other. Third, it tests the hypothesis that there exists a statistical relation between the semantic content of political speeches and UN voting behavior, falsifying it and suggesting that political speeches contain information of different nature then the one behind voting outcomes. The paper concludes with a discussion of the practical use of its results and consequences for foreign policy analysis, public accountability, and transparency.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.