Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Policy Preferences and Dynamics in the UN General Debate with Neural Word Embeddings (1707.03490v1)

Published 11 Jul 2017 in cs.CL, cs.AI, and stat.ML

Abstract: Foreign policy analysis has been struggling to find ways to measure policy preferences and paradigm shifts in international political systems. This paper presents a novel, potential solution to this challenge, through the application of a neural word embedding (Word2vec) model on a dataset featuring speeches by heads of state or government in the United Nations General Debate. The paper provides three key contributions based on the output of the Word2vec model. First, it presents a set of policy attention indices, synthesizing the semantic proximity of political speeches to specific policy themes. Second, it introduces country-specific semantic centrality indices, based on topological analyses of countries' semantic positions with respect to each other. Third, it tests the hypothesis that there exists a statistical relation between the semantic content of political speeches and UN voting behavior, falsifying it and suggesting that political speeches contain information of different nature then the one behind voting outcomes. The paper concludes with a discussion of the practical use of its results and consequences for foreign policy analysis, public accountability, and transparency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Stefano Gurciullo (6 papers)
  2. Slava Mikhaylov (3 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.