Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Sequential Accepts and Rejects for Identification of Top Arms in Stochastic Bandits (1707.02649v1)

Published 9 Jul 2017 in stat.ML and cs.LG

Abstract: We address the M-best-arm identification problem in multi-armed bandits. A player has a limited budget to explore K arms (M<K), and once pulled, each arm yields a reward drawn (independently) from a fixed, unknown distribution. The goal is to find the top M arms in the sense of expected reward. We develop an algorithm which proceeds in rounds to deactivate arms iteratively. At each round, the budget is divided by a nonlinear function of remaining arms, and the arms are pulled correspondingly. Based on a decision rule, the deactivated arm at each round may be accepted or rejected. The algorithm outputs the accepted arms that should ideally be the top M arms. We characterize the decay rate of the misidentification probability and establish that the nonlinear budget allocation proves to be useful for different problem environments (described by the number of competitive arms). We provide comprehensive numerical experiments showing that our algorithm outperforms the state-of-the-art using suitable nonlinearity.

Summary

We haven't generated a summary for this paper yet.