Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A spatiotemporal model with visual attention for video classification (1707.02069v2)

Published 7 Jul 2017 in cs.CV

Abstract: High level understanding of sequential visual input is important for safe and stable autonomy, especially in localization and object detection. While traditional object classification and tracking approaches are specifically designed to handle variations in rotation and scale, current state-of-the-art approaches based on deep learning achieve better performance. This paper focuses on developing a spatiotemporal model to handle videos containing moving objects with rotation and scale changes. Built on models that combine Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to classify sequential data, this work investigates the effectiveness of incorporating attention modules in the CNN stage for video classification. The superiority of the proposed spatiotemporal model is demonstrated on the Moving MNIST dataset augmented with rotation and scaling.

Citations (6)

Summary

We haven't generated a summary for this paper yet.