2000 character limit reached
Packings in real projective spaces (1707.01858v2)
Published 5 Jul 2017 in math.MG, cs.IT, math.CO, and math.IT
Abstract: This paper applies techniques from algebraic and differential geometry to determine how to best pack points in real projective spaces. We present a computer-assisted proof of the optimality of a particular 6-packing in $\mathbb{R}\mathbf{P}3$, we introduce a linear-time constant-factor approximation algorithm for packing in the so-called Gerzon range, and we provide local optimality certificates for two infinite families of packings. Finally, we present perfected versions of various putatively optimal packings from Sloane's online database, along with a handful of infinite families they suggest, and we prove that these packings enjoy a certain weak notion of optimality.