Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Finite-Dimensional Approximation of Phase-Field Models of Fracture (1707.00578v1)

Published 3 Jul 2017 in math.NA

Abstract: In this paper we focus on the finite-dimensional approximation of quasi-static evolutions of critical points of the phase-field model of brittle fracture. In a space discretized setting, we first discuss an alternating minimization scheme which, together with the usual time-discretization procedure, allows us to construct such finite-dimensional evolutions. Then, passing to the limit as the space discretization becomes finer and finer, we prove that any limit of a sequence of finite-dimensional evolutions is itself a quasi-static evolution of the phase-field model of fracture. In particular, our proof shows for the first time the consistency of numerical schemes related to the study of fracture mechanics and image processing.

Summary

We haven't generated a summary for this paper yet.