Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Monte Carlo likelihood-based inference for jump-diffusion processes (1707.00332v5)

Published 2 Jul 2017 in stat.ME

Abstract: Statistical inference for discretely observed jump-diffusion processes is a complex problem which motivates new methodological challenges. Thus existing approaches invariably resort to time-discretisations which inevitably lead to approximations in inference. In this paper, we give the first general collection of methodologies for exact (in this context meaning discretisation-free) likelihood-based inference for discretely observed finite activity jump-diffusions. The only sources of error involved are Monte Carlo error and convergence of EM or MCMC algorithms. We shall introduce both frequentist and Bayesian approaches, illustrating the methodology through simulated and real examples.

Summary

We haven't generated a summary for this paper yet.