Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speaker Identification in Shouted Talking Environments Based on Novel Third-Order Hidden Markov Models (1707.00138v1)

Published 1 Jul 2017 in cs.SD

Abstract: In this work we propose, implement, and evaluate novel models called Third-Order Hidden Markov Models (HMM3s) to enhance low performance of text-independent speaker identification in shouted talking environments. The proposed models have been tested on our collected speech database using Mel-Frequency Cepstral Coefficients (MFCCs). Our results demonstrate that HMM3s significantly improve speaker identification performance in such talking environments by 11.3% and 166.7% compared to second-order hidden Markov models (HMM2s) and first-order hidden Markov models (HMM1s), respectively. The achieved results based on the proposed models are close to those obtained in subjective assessment by human listeners.

Citations (2)

Summary

We haven't generated a summary for this paper yet.