Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Employing Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments (1706.09722v1)

Published 29 Jun 2017 in cs.SD

Abstract: Speaker identification performance is almost perfect in neutral talking environments; however, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environments. These proposed models possess the characteristics of both Circular Suprasegmental Hidden Markov Models (CSPHMMs) and Second-Order Suprasegmental Hidden Markov Models (SPHMM2s). The results of this work show that CSPHMM2s outperform each of: First-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM1s), Second-Order Left-to-Right Suprasegmental Hidden Markov Models (LTRSPHMM2s) and First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s) in the shouted talking environments. In such talking environments and using our collected speech database, average speaker identification performance based on LTRSPHMM1s, LTRSPHMM2s, CSPHMM1s and CSPHMM2s is 74.6%, 78.4%, 78.7% and 83.4%, respectively. Speaker identification performance obtained based on CSPHMM2s is close to that obtained based on subjective assessment by human listeners.

Citations (19)

Summary

We haven't generated a summary for this paper yet.