Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A tutorial on evaluating time-varying discrimination accuracy for survival models used in dynamic decision-making (1706.09603v2)

Published 29 Jun 2017 in stat.ME

Abstract: Many medical decisions involve the use of dynamic information collected on individual patients toward predicting likely transitions in their future health status. If accurate predictions are developed, then a prognostic mode can identify patients at greatest risk for future adverse events, and may be used clinically to define populations appropriate for targeted intervention. In practice, a prognostic model is often used to guide decisions at multiple time points over the course of disease, and classification performance, i.e. sensitivity and specificity, for distinguishing high-risk versus low-risk individuals may vary over time as an individual's disease status and prognostic information change. In this tutorial, we detail contemporary statistical methods that can characterize the time-varying accuracy of prognostic survival models when used for dynamic decision-making. Although statistical methods for evaluating prognostic models with simple binary outcomes are well established, methods appropriate for survival outcomes are less well known and require time-dependent extensions of sensitivity and specificity to fully characterize longitudinal biomarkers or models. The methods we review are particularly important in that they allow for appropriate handling of censored outcomes commonly encountered with event-time data. We highlight the importance of determining whether clinical interest is in predicting cumulative (or prevalent) cases over a fixed future time interval versus predicting incident cases over a range of follow-up time, and whether patient information is static or updated over time. We discuss implementation of time-dependent ROC approaches using relevant R statistical software packages. The statistical summaries are illustrated using a liver prognostic model to guide transplantation in primary biliary cirrhosis.

Summary

We haven't generated a summary for this paper yet.