Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficiency of quantum versus classical annealing in non-convex learning problems (1706.08470v3)

Published 26 Jun 2017 in quant-ph, cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: Quantum annealers aim at solving non-convex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists in designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of non-convex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes is dominated by local minima that cause exponential slow down of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions.

Citations (38)

Summary

We haven't generated a summary for this paper yet.