Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Auto-Encoding User Ratings via Knowledge Graphs in Recommendation Scenarios (1706.07956v2)

Published 24 Jun 2017 in cs.IR

Abstract: In the last decade, driven also by the availability of an unprecedented computational power and storage capabilities in cloud environments we assisted to the proliferation of new algorithms, methods, and approaches in two areas of artificial intelligence: knowledge representation and machine learning. On the one side, the generation of a high rate of structured data on the Web led to the creation and publication of the so-called knowledge graphs. On the other side, deep learning emerged as one of the most promising approaches in the generation and training of models that can be applied to a wide variety of application fields. More recently, autoencoders have proven their strength in various scenarios, playing a fundamental role in unsupervised learning. In this paper, we instigate how to exploit the semantic information encoded in a knowledge graph to build connections between units in a Neural Network, thus leading to a new method, SEM-AUTO, to extract and weigh semantic features that can eventually be used to build a recommender system. As adding content-based side information may mitigate the cold user problems, we tested how our approach behave in the presence of a few rating from a user on the Movielens 1M dataset and compare results with BPRSLIM.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.