Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing maximum cliques in $B_2$-EPG graphs (1706.06685v1)

Published 20 Jun 2017 in cs.DS and math.CO

Abstract: EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class $B_k$-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most $k$ bends. Epstein et al. showed in 2013 that computing a maximum clique in $B_1$-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least $4$, the class contains $2$-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for $B_2$ and $B_3$-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in $B_2$-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a ${2(k+1)}$-approximation for the coloring problem on $B_k$-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on $B_1$-EPG graphs (where the representation was needed).

Citations (6)

Summary

We haven't generated a summary for this paper yet.