Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimising the topological information of the $A_\infty$-persistence groups (1706.06019v1)

Published 19 Jun 2017 in math.AT, cs.CG, and cs.CV

Abstract: Persistent homology typically studies the evolution of homology groups $H_p(X)$ (with coefficients in a field) along a filtration of topological spaces. $A_\infty$-persistence extends this theory by analysing the evolution of subspaces such as $V := \text{Ker}\, {\Delta_n}{| H_p(X)} \subseteq H_p(X)$, where ${\Delta_m}{m\geq1}$ denotes a structure of $A_\infty$-coalgebra on $H_*(X)$. In this paper we illustrate how $A_\infty$-persistence can be useful beyond persistent homology by discussing the topological meaning of $V$, which is the most basic form of $A_\infty$-persistence group. In addition, we explore how to choose $A_\infty$-coalgebras along a filtration to make the $A_\infty$-persistence groups carry more faithful information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.