Papers
Topics
Authors
Recent
Search
2000 character limit reached

Holomorphic Hermite polynomials in two variables

Published 14 Jun 2017 in math.CA | (1706.04491v2)

Abstract: Generalizations of the Hermite polynomials to many variables and/or to the complex domain have been located in mathematical and physical literature for some decades. Polynomials traditionally called complex Hermite ones are mostly understood as polynomials in $z$ and $\bar{z}$ which in fact makes them polynomials in two real variables with complex coefficients. The present paper proposes to investigate for the first time holomorphic Hermite polynomials in two variables. Their algebraic and analytic properties are developed here. While the algebraic properties do not differ too much for those considered so far, their analytic features are based on a kind of non-rotational orthogonality invented by van Eijndhoven and Meyers. Inspired by their invention we merely follow the idea of Bargmann's seminal paper (1961) giving explicit construction of reproducing kernel Hilbert spaces based on those polynomials. "Homotopic" behavior of our new formation culminates in comparing it to the very classical Bargmann space of two variables on one edge and the aforementioned Hermite polynomials in $z$ and $\bar{z}$ on the other. Unlike in the case of Bargmann's basis our Hermite polynomials are not product ones but factorize to it when bonded together with the first case of limit properties leading both to the Bargmann basis and suitable form of the reproducing kernel. Also in the second limit we recover standard results obeyed by Hermite polynomials in $z$ and $\bar{z}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.