Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models (1706.04416v3)

Published 14 Jun 2017 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Gaussian graphical models are relevant tools to learn conditional independence structure between variables. In this class of models, Bayesian structure learning is often done by search algorithms over the graph space. The conjugate prior for the precision matrix satisfying graphical constraints is the well-known G-Wishart. With this prior, the transition probabilities in the search algorithms necessitate evaluating the ratios of the prior normalizing constants of G-Wishart. In moderate to high-dimensions, this ratio is often approximated using sampling-based methods as computationally expensive updates in the search algorithm. Calculating this ratio so far has been a major computational bottleneck. We overcome this issue by representing a search algorithm in which the ratio of normalizing constant is carried out by an explicit closed-form approximation. Using this approximation within our search algorithm yields significant improvement in the scalability of structure learning without sacrificing structure learning accuracy. We study the conditions under which the approximation is valid. We also evaluate the efficacy of our method with simulation studies. We show that the new search algorithm with our approximation outperforms state-of-the-art methods in both computational efficiency and accuracy. The implementation of our work is available in the R package BDgraph.

Citations (17)

Summary

We haven't generated a summary for this paper yet.