Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal gradings of orders (1706.04233v2)

Published 13 Jun 2017 in math.AC, math.NT, and math.RA

Abstract: For commutative rings, we introduce the notion of a {\em universal grading}, which can be viewed as the "largest possible grading". While not every commutative ring (or order) has a universal grading, we prove that every {\em reduced order} has a universal grading, and this grading is by a {\em finite} group. Examples of graded orders are provided by group rings of finite abelian groups over rings of integers in number fields. We generalize known properties of nilpotents, idempotents, and roots of unity in such group rings to the case of graded orders; this has applications to cryptography. Lattices play an important role in this paper; a novel aspect is that our proofs use that the additive group of any reduced order can in a natural way be equipped with a lattice structure.

Summary

We haven't generated a summary for this paper yet.