Papers
Topics
Authors
Recent
2000 character limit reached

Fast structure learning with modular regularization

Published 11 Jun 2017 in stat.ML, cs.IT, and math.IT | (1706.03353v3)

Abstract: Estimating graphical model structure from high-dimensional and undersampled data is a fundamental problem in many scientific fields. Existing approaches, such as GLASSO, latent variable GLASSO, and latent tree models, suffer from high computational complexity and may impose unrealistic sparsity priors in some cases. We introduce a novel method that leverages a newly discovered connection between information-theoretic measures and structured latent factor models to derive an optimization objective which encourages modular structures where each observed variable has a single latent parent. The proposed method has linear stepwise computational complexity w.r.t. the number of observed variables. Our experiments on synthetic data demonstrate that our approach is the only method that recovers modular structure better as the dimensionality increases. We also use our approach for estimating covariance structure for a number of real-world datasets and show that it consistently outperforms state-of-the-art estimators at a fraction of the computational cost. Finally, we apply the proposed method to high-resolution fMRI data (with more than 105 voxels) and show that it is capable of extracting meaningful patterns.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.