Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Saddles Good Enough for Deep Learning? (1706.02052v1)

Published 7 Jun 2017 in stat.ML, cs.LG, and cs.NE

Abstract: Recent years have seen a growing interest in understanding deep neural networks from an optimization perspective. It is understood now that converging to low-cost local minima is sufficient for such models to become effective in practice. However, in this work, we propose a new hypothesis based on recent theoretical findings and empirical studies that deep neural network models actually converge to saddle points with high degeneracy. Our findings from this work are new, and can have a significant impact on the development of gradient descent based methods for training deep networks. We validated our hypotheses using an extensive experimental evaluation on standard datasets such as MNIST and CIFAR-10, and also showed that recent efforts that attempt to escape saddles finally converge to saddles with high degeneracy, which we define as `good saddles'. We also verified the famous Wigner's Semicircle Law in our experimental results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.