Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localization of JPEG double compression through multi-domain convolutional neural networks (1706.01788v1)

Published 6 Jun 2017 in cs.MM and cs.CR

Abstract: When an attacker wants to falsify an image, in most of cases she/he will perform a JPEG recompression. Different techniques have been developed based on diverse theoretical assumptions but very effective solutions have not been developed yet. Recently, machine learning based approaches have been started to appear in the field of image forensics to solve diverse tasks such as acquisition source identification and forgery detection. In this last case, the aim ahead would be to get a trained neural network able, given a to-be-checked image, to reliably localize the forged areas. With this in mind, our paper proposes a step forward in this direction by analyzing how a single or double JPEG compression can be revealed and localized using convolutional neural networks (CNNs). Different kinds of input to the CNN have been taken into consideration, and various experiments have been carried out trying also to evidence potential issues to be further investigated.

Citations (121)

Summary

We haven't generated a summary for this paper yet.