Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and efficient validation of the linear hexahedral element (1706.01613v3)

Published 6 Jun 2017 in cs.CG and cs.NA

Abstract: Checking mesh validity is a mandatory step before doing any finite element analysis. If checking the validity of tetrahedra is trivial, checking the validity of hexahedral elements is far from being obvious. In this paper, a method that robustly and efficiently compute the validity of standard linear hexahedral elements is presented. This method is a significant improvement of a previous work on the validity of curvilinear elements. The new implementation is simple and computationally efficient. The key of the algorithm is still to compute B\'ezier coefficients of the Jacobian determinant. We show that only 20 Jacobian determinants are necessary to compute the 27 B\'ezier coefficients. Those 20 Jacobians can be efficiently computed by calculating the volume of 20 tetrahedra. The new implementation is able to check the validity of about 6 million hexahedra per second on one core of a personal computer. Through the paper, all the necessary information is provided that allow to easily reproduce the results, \ie write a simple code that takes the coordinates of 8 points as input and outputs the validity of the hexahedron.

Citations (16)

Summary

We haven't generated a summary for this paper yet.