Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Teaching Machines to Describe Images via Natural Language Feedback (1706.00130v2)

Published 1 Jun 2017 in cs.CL, cs.AI, cs.CV, and cs.HC

Abstract: Robots will eventually be part of every household. It is thus critical to enable algorithms to learn from and be guided by non-expert users. In this paper, we bring a human in the loop, and enable a human teacher to give feedback to a learning agent in the form of natural language. We argue that a descriptive sentence can provide a much stronger learning signal than a numeric reward in that it can easily point to where the mistakes are and how to correct them. We focus on the problem of image captioning in which the quality of the output can easily be judged by non-experts. We propose a hierarchical phrase-based captioning model trained with policy gradients, and design a feedback network that provides reward to the learner by conditioning on the human-provided feedback. We show that by exploiting descriptive feedback our model learns to perform better than when given independently written human captions.

Citations (46)

Summary

We haven't generated a summary for this paper yet.