Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L1-norm Error Function Robustness and Outlier Regularization (1705.09954v1)

Published 28 May 2017 in cs.CV

Abstract: In many real-world applications, data come with corruptions, large errors or outliers. One popular approach is to use L1-norm function. However, the robustness of L1-norm function is not well understood so far. In this paper, we present a new outlier regularization framework to understand and analyze the robustness of L1-norm function. There are two main features for the proposed outlier regularization. (1) A key property of outlier regularization is that how far an outlier lies away from its theoretically predicted value does not affect the final regularization and analysis results. (2) Another important feature of outlier regularization is that it has an equivalent continuous representation that closely relates to L1 function. This provides a new way to understand and analyze the robustness of L1 function. We apply our outlier regularization framework to PCA and propose an outlier regularized PCA (ORPCA) model. Comparing to the trace-normbased robust PCA, ORPCA has several benefits: (1) It does not suffer singular value suppression. (2) It can retain small high rank components which help retain fine details of data. (3) ORPCA can be computed more efficiently.

Citations (10)

Summary

We haven't generated a summary for this paper yet.