2000 character limit reached
On some geometric properties of currents and Frobenius theorem (1705.09938v3)
Published 28 May 2017 in math.DG
Abstract: In this note we announce some results, due to appear in [2], [3], on the structure of integral and normal currents, and their relation to Frobenius theorem. In particular we show that an integral current cannot be tangent to a distribution of planes which is nowhere involutive (Theorem 3.6), and that a normal current which is tangent to an involutive distribution of planes can be locally foliated in terms of integral currents (Theorem 4.3). This statement gives a partial answer to a question raised by Frank Morgan in [1].