Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Matrix Multiplication on CAM Based Accelerator (1705.09937v1)

Published 28 May 2017 in cs.AR

Abstract: Sparse matrix multiplication is an important component of linear algebra computations. In this paper, an architecture based on Content Addressable Memory (CAM) and Resistive Content Addressable Memory (ReCAM) is proposed for accelerating sparse matrix by sparse vector and matrix multiplication in CSR format. Using functional simulation, we show that the proposed ReCAM-based accelerator exhibits two orders of magnitude higher power efficiency as compared to existing sparse matrix-vector multiplication implementations.

Citations (15)

Summary

We haven't generated a summary for this paper yet.