Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Pour (1705.09021v1)

Published 25 May 2017 in cs.RO and cs.LG

Abstract: Pouring is a simple task people perform daily. It is the second most frequently executed motion in cooking scenarios, after pick-and-place. We present a pouring trajectory generation approach, which uses force feedback from the cup to determine the future velocity of pouring. The approach uses recurrent neural networks as its building blocks. We collected the pouring demonstrations which we used for training. To test our approach in simulation, we also created and trained a force estimation system. The simulated experiments show that the system is able to generalize to single unseen element of the pouring characteristics.

Citations (17)

Summary

We haven't generated a summary for this paper yet.