Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Bianchi identities and characteristic classes via DG categories (1705.08335v2)

Published 23 May 2017 in math.QA

Abstract: We show how DG categories arise naturally in noncommutative differential geometry and use them to derive noncommutative analogues of the Bianchi identities for the curvature of a connection. We also give a derivation of formulae for characteristic classes in noncommutative geometry following Chern's original derivation, rather than using cyclic cohomology. We show that a related DG category for extendable bimodule connections is a monoidal tensor category and in the metric compatible case give an analogue of a classical antisymmetry of the Riemann tensor. The monoidal structure implies the existence of a cup product on noncommutative sheaf cohomology. Another application is to prove that the curvature of a line module reduces to a 2-form on the base algebra. We also extend our geometric approach to Dirac operators. We illustrate the theory on the q-sphere, the permutation group S_3 and the bicrossproduct model quantum spacetime with algebra [r,t]=\lambda r.

Summary

We haven't generated a summary for this paper yet.