Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the correspondence between boundary and bulk lattice models and (logarithmic) conformal field theories (1705.07769v2)

Published 22 May 2017 in hep-th, cond-mat.stat-mech, math-ph, math.MP, and math.RT

Abstract: The relationship between bulk and boundary properties is one of the founding features of (Rational) Conformal Field Theory. Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of braid translation, which is a natural way to close an open spin chain by adding an interaction between the first and last spins using braiding to bring them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain - the ordinary Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic TL algebra. We show that for the Restricted Solid-On-Solid models, which are known to be described by minimal unitary CFTs in the continuum limit, the braid translation in fact does provide the ordinary periodic model starting from the open model with fixed boundary conditions on the two sides of the strip. This statement has a precise mathematical formulation, which is a pull-back map between irreducible modules of, respectively, the blob algebra and the affine TL algebra. We then turn to the same kind of analysis for two models whose continuum limits are Logarithmic CFTs - the alternating gl(1|1) and sl(2|1) spin chains. We find that the result for minimal models does not hold any longer: braid translation of the relevant TL modules does not give rise to the modules known to be present in the periodic chains. In the gl(1|1) case, the content in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit.

Summary

We haven't generated a summary for this paper yet.