Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Robust Object Recognition Using Composed Scenes from Generative Models (1705.07594v1)

Published 22 May 2017 in cs.CV

Abstract: Recurrent feedback connections in the mammalian visual system have been hypothesized to play a role in synthesizing input in the theoretical framework of analysis by synthesis. The comparison of internally synthesized representation with that of the input provides a validation mechanism during perceptual inference and learning. Inspired by these ideas, we proposed that the synthesis machinery can compose new, unobserved images by imagination to train the network itself so as to increase the robustness of the system in novel scenarios. As a proof of concept, we investigated whether images composed by imagination could help an object recognition system to deal with occlusion, which is challenging for the current state-of-the-art deep convolutional neural networks. We fine-tuned a network on images containing objects in various occlusion scenarios, that are imagined or self-generated through a deep generator network. Trained on imagined occluded scenarios under the object persistence constraint, our network discovered more subtle and localized image features that were neglected by the original network for object classification, obtaining better separability of different object classes in the feature space. This leads to significant improvement of object recognition under occlusion for our network relative to the original network trained only on un-occluded images. In addition to providing practical benefits in object recognition under occlusion, this work demonstrates the use of self-generated composition of visual scenes through the synthesis loop, combined with the object persistence constraint, can provide opportunities for neural networks to discover new relevant patterns in the data, and become more flexible in dealing with novel situations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.