Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting the solutions of $λ_1 x_1^{k_1}+\cdots +λ_t x_t^{k_t}\equiv c\bmod{n}$ (1705.07584v1)

Published 22 May 2017 in math.NT

Abstract: Given a polynomial $Q(x_1,\cdots, x_t)=\lambda_1 x_1{k_1}+\cdots +\lambda_t x_t{k_t}$, for every $c\in \mathbb{Z}$ and $n\geq 2$, we study the number of solutions $N_J(Q;c,n)$ of the congruence equation $Q(x_1,\cdots, x_t)\equiv c\bmod{n}$ in $(\mathbb{Z}/n\mathbb{Z})t$ such that $x_i\in (\mathbb{Z}/n\mathbb{Z})\times$ for $i\in J\subseteq I= {1,\cdots, t}$. We deduce formulas and an algorithm to study $N_J(Q; c,pa)$ for $p$ any prime number and $a\geq 1$ any integer. As consequences of our main results, we completely solve: the counting problem of $Q(x_i)=\sum\limits_{i\in I}\lambda_i x_i$ for any prime $p$ and any subset $J$ of $I$; the counting problem of $Q(x_i)=\sum\limits_{i\in I}\lambda_i x2_i$ in the case $t=2$ for any $p$ and $J$, and the case $t$ general for any $p$ and $J$ satisfying $\min{v_p(\lambda_i)\mid i\in I}=\min{v_p(\lambda_i)\mid i\in J}$; the counting problem of $Q(x_i)=\sum\limits_{i\in I}\lambda_i xk_i$ in the case $t=2$ for any $p\nmid k$ and any $J$, and in the case $t$ general for any $p\nmid k$ and $J$ satisfying $\min{v_p(\lambda_i)\mid i\in I}=\min{v_p(\lambda_i)\mid i\in J}$.

Summary

We haven't generated a summary for this paper yet.