Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why are Big Data Matrices Approximately Low Rank? (1705.07474v2)

Published 21 May 2017 in cs.LG and stat.ML

Abstract: Matrices of (approximate) low rank are pervasive in data science, appearing in recommender systems, movie preferences, topic models, medical records, and genomics. While there is a vast literature on how to exploit low rank structure in these datasets, there is less attention on explaining why the low rank structure appears in the first place. Here, we explain the effectiveness of low rank models in data science by considering a simple generative model for these matrices: we suppose that each row or column is associated to a (possibly high dimensional) bounded latent variable, and entries of the matrix are generated by applying a piecewise analytic function to these latent variables. These matrices are in general full rank. However, we show that we can approximate every entry of an $m \times n$ matrix drawn from this model to within a fixed absolute error by a low rank matrix whose rank grows as $\mathcal O(\log(m + n))$. Hence any sufficiently large matrix from such a latent variable model can be approximated, up to a small entrywise error, by a low rank matrix.

Citations (25)

Summary

We haven't generated a summary for this paper yet.