Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Definably compact groups definable in real closed fields.II (1705.07370v1)

Published 21 May 2017 in math.LO

Abstract: We continue the analysis of definably compact groups definable in a real closed field $\mathcal{R}$. In [3], we proved that for every definably compact definably connected semialgebraic group $G$ over $\mathcal{R}$ there are a connected $R$-algebraic group $H$, a definable injective map $\phi$ from a generic definable neighborhood of the identity of $G$ into the group $H\left(R\right)$ of $R$-points of $H$ such that $\phi$ acts as a group homomorphism inside its domain. The above result and our study of locally definable covering homomorphisms for locally definable groups combine to prove that if such group $G$ is in addition abelian, then its o-minimal universal covering group $\widetilde{G}$ is definably isomorphic, as a locally definable group, to a connected open locally definable subgroup of the o-minimal universal covering group $\widetilde{H\left(R\right){0}}$ of the group $H\left(R\right){0}$ for some connected $R$-algebraic group $H$.

Summary

We haven't generated a summary for this paper yet.