Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-based Catheter Segmentation in MRI-images (1705.06712v2)

Published 18 May 2017 in cs.CV

Abstract: Accurate and reliable segmentation of catheters in MR-guided interventions remains a challenge, and a step of critical importance in clinical workflows. In this work, under reasonable assumptions, mechanical model based heuristics guide the segmentation process allows correct catheter identification rates greater than 98% (error 2.88 mm), and reduction in outliers to one-fourth compared to the state of the art. Given distal tips, searching towards the proximal ends of the catheters is guided by mechanical models that are estimated on a per-catheter basis. Their bending characteristics are used to constrain the image feature based candidate points. The final catheter trajectories are hybrid sequences of individual points, each derived from model and image features. We evaluate the method on a database of 10 patient MRI scans including 101 manually segmented catheters. The mean errors were 1.40 mm and the median errors were 1.05 mm. The number of outliers deviating more than 2 mm from the gold standard is 7, and the number of outliers deviating more than 3 mm from the gold standard is just 2.

Citations (9)

Summary

We haven't generated a summary for this paper yet.