Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Locally Differentially Private Protocols (1705.04421v2)

Published 12 May 2017 in cs.CR

Abstract: Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user's privacy, without relying on a trusted third party. LDP protocols (such as Google's RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending it to an aggregator, who combines values that users contribute to infer statistics about the population. In this paper, we introduce a framework that generalizes several LDP protocols proposed in the literature. Our framework yields a simple and fast aggregation algorithm, whose accuracy can be precisely analyzed. Our in-depth analysis enables us to choose optimal parameters, resulting in two new protocols (i.e., Optimized Unary Encoding and Optimized Local Hashing) that provide better utility than protocols previously proposed. We present precise conditions for when each proposed protocol should be used, and perform experiments that demonstrate the advantage of our proposed protocols.

Citations (7)

Summary

We haven't generated a summary for this paper yet.