Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators (1705.03803v2)

Published 10 May 2017 in math.OC

Abstract: We study the behavior of the trajectories of a second-order differential equation with vanishing damping, governed by the Yosida regularization of a maximally monotone operator with time-varying index, along with a new {\em Regularized Inertial Proximal Algorithm} obtained by means of a convenient finite-difference discretization. These systems are the counterpart to accelerated forward-backward algorithms in the context of maximally monotone operators. A proper tuning of the parameters allows us to prove the weak convergence of the trajectories to zeroes of the operator. Moreover, it is possible to estimate the rate at which the speed and acceleration vanish. We also study the effect of perturbations or computational errors that leave the convergence properties unchanged. We also analyze a growth condition under which strong convergence can be guaranteed. A simple example shows the criticality of the assumptions on the Yosida approximation parameter, and allows us to illustrate the behavior of these systems compared with some of their close relatives.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.