2000 character limit reached
Bekka-type amenabilities for unitary corepresentations of locally compact quantum groups (1705.03512v1)
Published 7 May 2017 in math.OA, math.FA, and math.QA
Abstract: In this short note, further to Ng's study, we extend Bekka amenability and weak Bekka amenability to general locally compact quantum groups. We generalize some Ng's results to the general case. In particular, we show that, a locally compact quantum group $\mathbb{G}$ is co-amenable if and only if the contra-corepresentation of its fundamental multiplicative unitary $W_{\mathbb{G}}$ is Bekka amenable, and $\mathbb{G}$ is amenable if and only if its dual quantum group's fundamental multiplicative unitary $W_{\widehat{\mathbb{G}}}$ is weakly Bekka amenable.