Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Deep Spatio-temporal Manifold Network for Action Recognition (1705.03148v1)

Published 9 May 2017 in cs.CV

Abstract: Visual data such as videos are often sampled from complex manifold. We propose leveraging the manifold structure to constrain the deep action feature learning, thereby minimizing the intra-class variations in the feature space and alleviating the over-fitting problem. Considering that manifold can be transferred, layer by layer, from the data domain to the deep features, the manifold priori is posed from the top layer into the back propagation learning procedure of convolutional neural network (CNN). The resulting algorithm --Spatio-Temporal Manifold Network-- is solved with the efficient Alternating Direction Method of Multipliers and Backward Propagation (ADMM-BP). We theoretically show that STMN recasts the problem as projection over the manifold via an embedding method. The proposed approach is evaluated on two benchmark datasets, showing significant improvements to the baselines.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.